
COMBINATORIAL MODELS IN THE TOPOLOGICAL

CLASSIFICATION OF SINGULARITIES OF MAPPINGS
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Abstract. The topological classification of finitely determined map
germs f : (Rn, 0)→ (Rp, 0) is discrete (by a theorem due to R. Thom),
hence we want to obtain combinatorial models which codify all the topo-
logical information of the map germ f . According to Fukuda’s work, the
topology of such germs is determined by the link, which is obtained by
taking the intersection of the image of f with a small enough sphere
centered at the origin. If f−1(0) = {0}, then the link is a topologically
stable map γ : Sn−1 → Sp−1 (or stable if (n, p) are nice dimensions) and
f is topologically equivalent to the cone of γ. When f−1(0) 6= {0}, the
situation is more complicated. The link is a topologically stable map
γ : N → Sp−1, where N is a manifold with boundary of dimension n−1.
However, in this case, we have to consider a generalized version of the
cone, so that f is again topologically equivalent to the cone of the link
diagram. We analyze some particular cases in low dimensions, where
the combinatorial models are provided by objects which are well known
in Computational Geometry, for instance, the Gauss word or the Reeb
graph.
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1. Introduction

René Thom showed in [41] that the topological classification of finitely
determined map germs f : (Rn, 0)→ (Rp, 0) is discrete and hence, there are
no moduli. The same assertion is not true if we consider the C∞ classification
by A -equivalence (for instance, consider the 1-parameter family ft(x, y) =
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2 J.J. NUÑO-BALLESTEROS

xy(x + y)(x − ty)) or if we remove the finite determinacy assumption. In
fact, Thom himself found a 1-parameter family of germs ft : (R3, 0) →
(R3, 0) with the property that any two distinct members of the family are
not topologically equivalent (see [40]). Since the classification problem is
discrete, a natural open question is to find a good combinatorial model
which codifies the topological information of the map germ.

In [8], T. Fukuda proved that if the map germ is finitely determined
and has isolated zeros (i.e., if f−1(0) = {0}), then f has a cone structure
on its link. The link is obtained by intersecting the image of f with a
small enough sphere centered at the origin in Rp. The main result is that
the link turns out to be a mapping between spheres γ : Sn−1 → Sp−1

which is topologically stable (in fact, stable if (n, p) are nice dimensions
in Mather’s sense). Moreover, f is topologically equivalent to the cone of
its link. Thus, the topological classification of germs can be deduced from
the topological classification of topological stable mappings between spheres
of one dimension less. We remark that the condition of isolated zeros is
automatically satisfied when n ≤ p. We review the proof of Fukuda’s cone
structure theorem for germs with isolated zeros in Section 4.

In a later paper [9], Fukuda also considered the case of non isolated zeros
(i.e., f−1(0) 6= {0}). The classification problem in this case is much more
complicated. He showed the link is a mapping γ : N → Sp−1 from a mani-
fold with boundary N which is again topologically stable (or stable in nice
dimensions). However, the germ f has not a cone structure on its link in
the usual sense. We introduce in Section 7 the notion of generalized cone
(following [5]) and also give an adapted version of the cone theorem for the
case of non isolated zeros, by using this generalized version of the cone.

In low dimensions, the topological classification of finitely determined map
germs has been widely developed by the author and other collaborators. We
have studied the cases of map germs f : (R2, 0) → (R3, 0) in [22, 23, 24],
map germs f : (R2, 0)→ (R2, 0) in [31, 32, 34] and map germs f : (R3, 0)→
(R3, 0) in [33, 35, 36]. In all these cases, the combinatorial model used for
the topological classification is provided by the Gauss words.

More recently, we have also considered the case of map germs f : (R3, 0)→
(R2, 0) in [2, 3] where we use the Reeb graph as a good combinatorial model
for the singularity and the case of map germs f : (R2, 0) → (R4, 0) in [25],
where we find a connection with Knot Theory. In [5], we also consider the
topological classification of map germs with respect to the contact equiva-
lence K instead of the right-left equivalence A .

Gauss words and Reeb graphs are well known objects in Computational
Geometry. We will explain in Sections 5, 6 how to construct these models
as well as the main results for the case of map germs f : (R2, 0) → (R3, 0)
and map germs f : (R3, 0)→ (R2, 0) with isolated zeros, respectively.

In Sections 2 and 3 we review the basic concepts of stability and finite
determinacy that we need for the course. There are no proofs for all the
results in these sections, but we provide precise references which can be
found basically in the celebrated six papers about stability by Mather [16,
17, 18, 19, 20, 21], the survey papers by Wall [42, 43] and the book by Gibson
et al. [11].
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2. Stability

Along the text, we use the following notation:

En = set of C∞ function germs h : (Rn, 0)→ R,

E (n, p) = set of C∞ map germs f : (Rn, 0)→ (Rp, 0),

Rn = set of C∞ diffeomorphism germs φ : (Rn, 0)→ (Rn, 0).

Definition 2.1. We say that two germs f, g ∈ E (n, p) are A -equivalent if
there exist φ ∈ Rn and ψ ∈ Rp such that g = ψ ◦ f ◦ φ−1. That is, the
following diagram is commutative, where the columns are diffeomorphisms:

(Rn, 0)
f−−−−→ (Rp, 0)yφ yψ

(Rn, 0)
g−−−−→ (Rp, 0)

In the case that φ, ψ are homeomorphisms instead of diffeomorphisms, then
we say that f, g are C0-A -equivalent.

We can characterize the A -equivalence through the group action Rn×Rp

on E (n, p) given by (φ, ψ) · f = ψ ◦ f ◦ φ−1. Then f, g ∈ E (n, p) are A -
equivalent if they are in the same orbit.

Given f ∈ E (n, p), an r-parameter unfolding of f is another germ F ∈
E (r + n, r + p) of the form F (u;x) = (u; fu(x)) and such that f0 = f .

Definition 2.2. Two unfolding F,G of f are A -equivalent (as unfoldings)
if there exist diffeomorphisms Φ ∈ Rr+n and Ψ ∈ Rr+p unfoldings of the
identity maps in (Rn, 0) and (Rp, 0) respectively, such that G = Ψ◦F ◦Φ−1.

We say that an unfolding F of f is trivial if F is A -equivalent to the
constant unfolding G = id×f . If F (u;x) = (u; fu(x)), Φ(u;x) = (u;φu(x))
and Ψ(u; y) = (u;ψu(y)), we have

ψu ◦ fu ◦ φ−1
u = f.

Thus, the germ of fu at the point φ−1
u (0) is A -equivalent to f , but in general

we do not have φ−1
u (0) = 0.

We say that f ∈ E (n, p) is stable if any unfolding F of f is trivial.

The above definition is known as stability by deformations or by homo-
topies when we consider mappings instead of germs. An immediate conse-
quence of the definition is that the property that a germ is stable is invari-
ant under A -equivalence. Therefore, the definition can be extended without
problem by taking coordinate charts for smooth map germs between smooth
manifolds f : (N, x)→ (P, y).

Exemple 2.3. From the definition, one deduces easily that if f is regular
(i.e., the differential df0 has maximal rank), then f is stable.

The set of germs En has a structure of commutative and unit local R-
algebra, whose maximal ideal mn is given by the germs h ∈ En such that
h(0) = 0. Any f ∈ E (n, p) induces an R-algebra homomorphism f∗ : Ep →
En through f∗(h) = h ◦ f . Moreover, E (n, p) has a structure of En-module
and of Ep-module via f∗.
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Given f ∈ E (n, p), we denote by θ(f) the set of C∞ germs of vector fields
η : (Rn, 0)→ TRp along f , that is, such that π ◦ η = f where π : TRp → Rp
is the canonical projection. A generic element of θ(f) is written in a unique
way as

η =

p∑
i=1

gi

(
∂

∂yi
◦ f
)
, gi ∈ En,

where y1, . . . , yp are the coordinates in Rp. In this way, θ(f) has a structure
of En-module isomorphic to (En)p, after identification of η with the p-tuple
(g1, . . . , gp). In case that f is the germ of the identity map in (Rn, 0) or
(Rp, 0), we denote θ(f) by θn or θp respectively.

For each f ∈ E (n, p) we can define two module homomorphisms. First,
we have an En-module homomorphism:

tf : θn → θ(f)
ξ 7→ df ◦ ξ ,

where df is the differential of f . On the other hand, we have an Ep-module
homomorphism:

wf : θp → θ(f)
η 7→ η ◦ f ,

where now in θ(f) we consider the Ep-module structure induced by f∗ :
Ep → En.

Definition 2.4. Given f ∈ E (n, p), the A -tangent space (of f) and the
extended A -tangent space (of f) are defined respectively as

TA f = tf
(
mnθn

)
+ wf

(
mpθp

)
,

TAef = tf
(
θn
)

+ wf
(
θp
)
.

The A -codimension and the Ae-codimension are defined as

A − codim(f) = dimR
mnθ(f)

TA f
,

Ae − codim(f) = dimR
θ(f)

TAef
.

The following theorem is known as the infinitesimal stability criterion of
Mather. The proof can be found in [11, 2.2].

Theorem 2.5. A germ f ∈ E (n, p) is stable if and only if its Ae-codimension
is zero.

By using the above identification of θ(f) with (En)p, the above theorem
says that f ∈ E (n, p) is stable if and only if for each α ∈ (En)p there exist
g ∈ (En)n and h ∈ (Ep)p such that

α = h ◦ f +
n∑
i=1

gi
∂f

∂xi
.

Exemple 2.6. We begin with the case of functions p = 1, we see that
f ∈ E (n, 1) has stable singularity if and only f is a Morse function. In
fact, if f is a Morse function (i.e., it has non degenerate critical point at the
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origin) by the Morse lemma, we can assume that f is given (up to coordinate
changes) by

f(x) = x2
1 + · · ·+ x2

s − x2
s+1 − · · · − x2

n,

in such a way that ∂f
∂xi

= ±2xi. Given α ∈ En, by the Hadamard lemma
there exist gi ∈ En such that α is written as

α = α(0) +
n∑
i=1

xigi = α(0) ◦ f +
n∑
i=1

(±gi
2

)
∂f

∂xi
,

and f is stable by Theorem 2.5.
Conversely, suppose that f is not a Morse function and has a denegerate

critical point at the origin. Consider the n-parameter unfolding F (a, x) =
(a, fa(x)) given by

fa(x) = f(x) + a1x1 + · · ·+ anxn.

Fix a representative F : Rn × U → Rn × R, where U ⊂ Rn is an open
neighbourhood of the origin. By the Thom Transversality Theorem [12,
Theorem 4.9], for almost any a ∈ Rn, fa : U → R is a Morse function, and
hence, fa cannot be A -equivalent to f . This shows that the unfolding F is
not trivial and f is not stable.

Exemple 2.7. Let n = 1 and p = 2. Then f ∈ E (1, 2) is stable only in the
case that f is an immersion. In fact, if f is singular we can consider the
2-parameter unfolding F (a, x) = (a, fa(x)) given by

fa(x) = f(x) + ax.

Again we fix a representative F : R2 × (−ε, ε) → R2 × R2. By the Thom
Transversality Theorem, for almost any a ∈ R2, fa : (−ε, ε) → R2 is an
immersion and fa cannot be A -equivalent to f . Thus, F is not trivial and
f is not stable.

Sometimes it can be complicated to see that a certain germ is stable
by means of Theorem 2.5. Also, the genericity arguments we have used to
check that the germs are the only stable singularities may not work in higher
dimensions. We present here a pair of results which give easy methods to
check stability and to obtain normal forms for stable germs. Both are related
to the concept of contact or K -equivalence. This is another important
equivalence introduced by Mather, which is weaker than A -equivalence.
We do not include here the definition, details can be found in [19].

Definition 2.8. For each germ f ∈ E (n, p), the K -extended tangent space
is defined as:

TKef = tf(θn) + (f∗mp)θ(f).

Note that ωf(mpθp) ⊂ (f∗mp)θ(f), hence ωf induces a well defined mor-
phism:

ωf : Rp ∼=
θp

mpθp
−→ θ(f)

TKef
.

Lemma 2.9. [19, Proof of Proposition I.6] A germ f ∈ E (n, p) is stable if
and only if ω(f) is an epimorphism.
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An equivalent statement of Lemma 2.9 is that f is stable if and only
if θ(f)/TKef is generated over R by the classes of the canonical basis
{e1, . . . , ep} in Rp. Note that TKef is an En-module which is finitely gen-
erated, in fact, it is generated over En by ∂f/∂xi, i = 1, . . . , n and by fjek,
with j, k = 1, . . . , p. Thus, it is possible to compute it by using some com-
puter algebra system like Singular [13].

Definition 2.10. For each germ f ∈ E (n, p), the local algebra (of f) is
defined as

Q(f) =
En
f∗mp

.

Theorem 2.11. [19] Two stable germs are A -equivalent if and only if their
local algebras are isomorphic.

Exemple 2.12. Let us see that for n = p = 2, a singular germ f ∈ E (2, 2)
is stable if and only if f has a singularity of type fold f(x, y) = (x, y2) or
cusp f(x, y) = (x, xy + y3).

If f is a fold, we have:

TKef = E2

{(
1
0

)
,

(
0
2y

)}
+ 〈x, y2〉E 2

2

= E2

{(
1
0

)
,

(
0
x

)
,

(
0
y

)}
.

Thus θ(f)/TKef is generated over R by the class of (0, 1) and the map ωf
is obviously surjective, so f is stable by Lemma 2.9.

In the case of the cusp, we have:

TKef = E2

{(
1
y

)
,

(
0

3y2 + x

)}
+ 〈x, y3 + xy〉E 2

2

= E3

{(
1
y

)
,

(
0
x

)
,

(
0
y2

)}
.

Now, θ(f)/TKef is generated over R by the classes of {(1, 0), (0, 1)}. Again
ωf is surjective and hence, f is stable.

Assume now that f is stable, so that ωf is surjective. If f has rank 0,
then TKef ⊂ m2θ(f). Since θ(f)/m2θ(f) has dimension 2, we must have
necessarily that TKef = m2θ(f). Moreover, (f∗m2) ⊂ m2

2θ(f), the classes
of ∂f/∂x and ∂f/∂y should generate m2θ(f)/m2

2θ(f) over R. But this is not
possible, since this space has dimension 4.

Thus, f must have rank 1 and after a coordinate change in the source, we
can assume that f(x, y) = (x, g(x, y)), for some function g ∈ m2

2. In other
words, we see f as an unfolding of g0(y) = g(0, y). An easy exercise shows
that

θ(f)

TKe(f)
∼=

θ(g0)

TKe(g0)
∼=

E1

〈g′0〉
.

If g0 ∈ m4
1, then g′0 ∈ m3

1 and thus dimR(E1/〈g′0〉) ≥ 3, which is not possible
by the surjectivity of ωf . Hence, g0 must have order 2 or 3. But this
implies that either Q(f) ∼= E1/〈y2〉 or Q(f) ∼= E1/〈y3〉. By Theorem 2.11, f
is A -equivalent either to the fold or the cusp, respectively.
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Given a germ f ∈ E (n, p), for each k ∈ N we denote by jkf(0) the k-jet
of f , that is, the Taylor polynomial of degree k of f at the origin. The
k-jet space Jk(n, p) is the space of k-jets jkf(0) of germs f ∈ E (n, p). Then
Jk(n, p) is identified with the space of polynomial maps σ : Rn → Rp of
degree less than or equal to k and such that σ(0) = 0. We denote by
Lk(n) ⊂ Jk(n, n) the group of k-jets of diffeomorphism germs with the
product defined by the k-jet of the composition. Moreover, we have the
action of Lk(n) × Lk(p) on Jk(n, p) induced by the action of Rn × Rp on
E (n, p).

The k-jet spaces provide a finite-dimensional model of the classification
problem by A -equivalence. The jet space Jk(n, p) can be identified with an
Euclidean space RN and the group G = Lk(n)×Lk(p) is a Lie group of finite
dimension acting on Jk(n, p) in a semialgebraic way. As a consequence, for
each σ ∈ Jk(n, p) the orbit G · σ is a semialgebraic submanifold of Jk(n, p).
In fact, G · σ is a semialgebraic subset which contains at least a regular
point. But the orbit is locally diffeomorphic at all of its points because of
the group action. Thus, G · σ is regular at all of its points.

For each f ∈ E (n, p), we have an epimorphism from mnθ(f) to Jk(n, p)
given by g 7→ jkg(0) and whose kernel is mk+1

n θ(f). This allows us to identify

Tσ(Jk(n, p)) ∼=
mnθ(f)

mk+1
n θ(f)

.

Under this identification, the tangent space to the orbit G · σ is precisely

Tσ(G · σ) =
TA f + mk+1

n θ(f)

mk+1
n θ(f)

.

In particular, if mk+1
n θ(f) ⊂ TA f , we deduce that the codimension of the

orbit G · σ is equal to the A -codimension.
Given f ∈ E (n, p), we denote by jkf : (Rn, 0)→ Jk(n, p) the germ of the

k-jet extension of f (for each x ∈ Rn, jkf(x) is the k-jet of f at the point
x after translation to the origin). Then, we have the following result which
characterizes the stability in terms of k-jets.

Theorem 2.13. Let f ∈ E (n, p), k ≥ p+ 1 and σ = jkf(0). Then:

(1) f is stable if and only if jkf : (Rn, 0) → Jk(n, p) is transverse to
G · σ.

(2) If f is stable, then mk+1
n θ(f) ⊂ TA f and hence, codim(G · σ) =

A − codim(f).
(3) If f is stable, then g is A -equivalent to f if and only if jkg(0) ∈ G·σ.

Proof. Part (1) can be found in [43, Theorem 15] whilst (2) and (3) follow
from the fact that if f is stable then it is (p+ 1)-determined (see again [43,
Theorem 15] and Section 3), then use [42, Theorem 1.2]. �

Definition 2.14. Given a stable germ f ∈ E (n, p), we denote byA ⊂ (Rn, 0)
the germ of the subset of points x such that the germ of f at x is A -
equivalent to the germ of f at 0. As a consequence of Theorem 2.13, A is
the germ of a submanifold in (Rn, 0) of codimension A − codim(f) and the
restriction f |A : A→ (Rp, 0) is an immersion (unless the trivial case that f
is a submersion). We say that A is the analytic stratum of f in the source.
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Note that if f is defined by a polynomial map, then A is a semialgebraic
subset of Rn.

We pass now to the study of multi-germs. Given a finite subset S =
{x1, . . . , xr} ⊂ Rn, we consider multi-germs of C∞ maps of the form f :
(Rn, S) → (Rp, y). The definitions of A -equivalence, unfolding, trivial un-
folding and stable germ can be generalized without any problem for multi-
germs. Also the definitions of θ(f) and of extended A -tangent space TeA f
can be adapted to the case of multi-germs and the infinitesimal stability cri-
terion (Theorem 2.5) is still true. Moreover, next theorem allows to check
in a relatively easy way whether a multi-germ is stable.

Given a multi-germ f : (Rn, S) → (Rp, y) with S = {x1, . . . , xr}, we
denote the restriction germ by fi : (Rn, xi)→ (Rp, y) and by Ai the analytic
stratum of fi in the source, i = 1, . . . , r.

Theorem 2.15. [19, 1.6] A multi-germ f : (Rn, S) → (Rp, y) is stable if
and only if for each i = 1, . . . , r, fi is stable and the subspaces

dfx1(Tx1A1), . . . , dfxr(TxrAr)

have regular intersection in Rp.

The regular intersection condition means that the codimension of the
intersection is the sum of all the codimensions. Note that if f is a submersion
at a point xi, then dfxi(TxiAi) = Rp. In this way, if S̃ ⊂ S is the subset of
critical (i.e., non submersive) points of f , f : (Rn, S) → (Rp, y) is stable if

and only if f : (Rn, S̃) → (Rp, y) is stable. Thus, we can assume without
loss of generality that all the points of S are critical.

Exemple 2.16. Let us see what happens in the above examples when we
consider multi-germs.

• Let f : (Rn, S) → (R, y). At each critical point xi of S, f must be
a Morse singularity and the analytic stratum Ai is only the point
{xi}. Hence, f is stable if and only if S is a single point and f has
a Morse singularity at that point.
• Let f : (R, S)→ (R2, y). Then f is stable only in the case that it is

an immersion with normal crossings. So, the stable multi-germs are
the simple regular point and the transverse double point.
• Let f : (R2, S)→ (R2, y). At each critical point xi of S, f must have

fold or cusp type. If any of the points xi has cusp type, then again
the analytic stratum is {xi} and necessarily S = {xi}. Otherwise, if
all the points have fold type, then each Ai is a curve and now the
regular intersection condition implies that we can have either simple
points or transverse double points. In conclusion, f is stable if and
only if S is made of a simple fold, a simple cusp or two transverse
folds.

Given a C∞-mapping f : N → P between manifolds, we denote by Σ(f) ⊂
N the set of critical points (where f is not submersive) and its image ∆(f) =
f(Σ(f)) is called the discriminant.
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Definition 2.17. Given a stable multi-germ f : (Rn, S) → (Rp, y), we
denote by B ⊂ (Rp, y) the germ of all points y′ ∈ ∆(f) such that the
multi-germ of f at S′ = f−1(y′) ∩ Σ(f) is A -equivalent to the multi-germ
of f at S. Then B is a germ of submanifold in (Rp, y) which results from
the intersection of the submanifolds fi(Ai), where each Ai is the analytic
stratum of fi : (Rn, xi) → (Rp, y) in the source. We say that B is the
analytic stratum of f in the target.

If dimB = d, then we say that the multi-germ f represents a d-dimensional
stable type. In particular, when d = 0, we say that f is a 0-stable type.
Again, in the case that f is polynomial, B is a semialgebraic subset of Rp.

Next, we will prove an interesting property which will be used in Section
4 to construct the cone structure of finitely determined germs.

Definition 2.18. For each germ f ∈ E (n, p), we define τ(f) as the subspace
of Rp given by the kernel of ωf : Rp → θ(f)/TKef .

We will see that if f is stable, then τ(f) is nothing but T0B, where B is
the analytic stratum of f in the target. The first step is to prove that they
have the same dimension.

Lemma 2.19. If f ∈ E (n, p) is stable, then dimB = dimR τ(f), where B
is the analytic stratum in the target.

Proof. Assume that dimR τ(f) = d. By Lemma 2.9, we have

dimR
θ(f)

TKef
= dimR

Rp

τ(f)
= p− d.

We use the formulas of [42, 4.5.1, 4.5.2], which give:

A − codim(f) = p− d+ (n− p) = n− d.
It follows from Theorem 2.13 that this is equal to the codimension of the
analytic straum in the source in (Rn, 0). Thus, the analyic stratum in the
source (and hence in the target) has dimension d. �

Lemma 2.20. Let f ∈ E (n, p) be a stable germ and assume that dimR τ(f) =
d. Then f is A -equivalent to idRd,0×g0, where g0 ∈ E (n− d, p− d) is also
a stable germ.

Proof. We choose linear coordinates in Rp such that τ(f) = Rd×{0}. Given
v ∈ τ(f), there exists ξ ∈ θp such that ξ0 = v and ωf(ξ) = tf(η) + ν, for
some η ∈ θn and ν ∈ f∗mpθ(f) and evaluating at 0, we get v = df(η0). This
shows that τ(f) ⊂ df0(Rn). Hence, we can choose smooth coordinates in
(Rn, 0) such that f is an unfolding of a map germ g ∈ E (n− d, p− d), that
is,

f(u, x) = (u, gu(x)), u ∈ Rd, x ∈ Rn−d.
Consider the following commutative diagram:

Rp
τ(f)

∼=−−−−→ θ(f)
TKe(f)

∼=
y y∼=

Rp−d ωg0−−−−→ θ(g0)
TKe(g0)
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The top arrow is an isomorphism induced by ωf and the columns are also
isomorphisms: the left arrow is induced by the projection and is an isomor-
phism because τ(f) = Rd × {0} and the right arrow is also an isomorphism
because f is an unfolding of g0. Then, ωg0 is also an isomorphism, so g0

is stable by Lemma 2.9. By definition of stability, f is A -equivalent to the
constant unfolding idRd,0×g0. �

Corollary 2.21. If f ∈ E (n, p) is stable, then τ(f) = T0B, where B is the
analytic stratum in the target.

Proof. By Lema 2.20, we can assume that f = idRd,0×g0, where g0 ∈ E (n−
d, p− d) is also a stable germ such that τ(g0) = {0}. We know from Lemma
2.19 that the analytic stratum of g0 is also equal to {0}, so

τ(f) = Rd × {0} = T0B.

�

Proposition 2.22. Let f : (Rn, S)→ (Rp, y) be a stable multi-germ and let
B be the analytic stratum in the target. If P ⊂ Rp is a submanifold trans-
verse to B at y, then N = f−1(P ) is a submanifold of Rn in a neighbourhood
of S and the restriction f |N,S : (N,S)→ (P, y) is stable.

Proof. For each i, we have that dfxi(Rn) ⊃ dfxi(TxiAi) ⊃ TyB. If B and P
are transverse at y, then f is transverse to P at xi and N is a submanifold
of Rn in a neighbourhood of xi. Let us assume for a moment that each
restriction f |N,xi : (N, xi) → (P, y) is a stable germ. The analytic stratum
in the source is N ∩Ai and the image by the differential of the tangent space
is

dfxi(Txi(N ∩Ai)) = dfxi(TxiAi) ∩ TyP.
Thus, the transversality between B and P at the point y ensures that the
images of the tangent spaces of N ∩Ai have regular intersection in TyP .

It only remains to show that each germ f |N,xi : (N, xi)→ (P, y) is stable.
We assume, for simplicity, that xi = 0 and y = 0. By Lemma 2.20, we
can also assume that fi = idRd,0×g, where g ∈ E (n − d, p − d) is also a
stable germ and d = dimAi. The transversality assumption implies that
T0P contains {0} × Rp−d and T0N contains {0} × Rn−d.

Consider the following diagram:

(N, 0)
f |N,0−−−−→ (P, 0)xi xj

(Rn−d, 0)
g−−−−→ (Rp−d, 0),

where i(z) = (0, z) and j(w) = (0, w). Then we have that i, j are immer-
sions, that j is transverse to f |N,0 and that diagram is cartesian (that is,

it is commutative and the mapping (i, g) from Rn−d into the submanifold
{(x,w) ∈ N × Rp−d : f(x) = j(w)} is a diffeomorphism). Thus, f |N,0 can
be seen, after A -equivalence, as an unfolding of g (see [11, III.0.1]). But it
is easy to see that if g is stable, then any unfolding of g is also stable. �

If instead of germs of C∞ maps, we consider germs of analytic maps (real
or complex), then all the definitions of A -equivalence, unfoldings, stability,
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extended A -tangent space, Ae-codimension as well as all the theorems relat-
ing these concepts are still valid. In that case, the diffeomorphisms, vector
fields and manifolds are considered also of analytic class (real or complex).
Moreover, all the showed examples of stable germs or multi-germs work in
the same way in the analytic case (real or complex). In fact, we have the
following result which gives the relation between the three classes [42, 1.7].

Proposition 2.23. Let f : (Rn, S)→ (Rp, y) be a real analytic multi-germ,
then the following statements are equivalent:

(1) f is stable as a C∞ multi-germ.
(2) f is stable as a real analytic multi-germ.

(3) The complexification f̂ is stable as a complex analytic multi-germ.

We finish this section with the notion of stability of mappings.

Definition 2.24. We say that f : N → P is locally stable if

(1) the restriction f : Σ(f)→ P is finite (i.e., finite-to-one and closed),
(2) for any y ∈ ∆(f), the multi-germ f : (N,S)→ (P, y) is stable, where

S = f−1(y) ∩ Σ(f).

Exemple 2.25. We come back to the above examples. Let f : N → P ,
with dimN = n and dimP = p.

• If p = 1, then f is locally stable if and only if f is a Morse function
with distinct critical points (see fig. 1).

f

Figure 1. Example of locally stable function

• If n = 1 and p = 2, then f is locally stable if and only if f is an
immersion with transverse double points (see fig. 2).

f

Figure 2. Example of locally stable plane curve
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• If n = p = 2, then f is locally stable if and only if the singularities
of f are simple folds, simple cusps of transverse double folds (see fig.
3).

f

Figure 3. Example of locally stable map between surfaces

There exists a concept of global stability. We say that a C∞ mapping
f : N → P between smooth manifolds is globally stable if there exists a
neighbourhood W of f in C∞(N,P ) with the Whitney C∞ topology, such
that any g ∈ W is A -equivalent to f . Mather proved in [17] that if the
restriction f |Σ(f) is proper, then the local and the global stability coincide.
However, this result cannot be used in the real or complex analytic case.

3. Finite determinacy

We begin this section with the definition of finite determinacy.

Definition 3.1. Given f ∈ E (n, p) and k ∈ N, we say that f is k-determined
if for any g ∈ E (n, p) such that jkf(0) = jkg(0), then f, g are A -equivalent.
We say that f is finitely determined (FD) if it is k-determined for some
k ∈ N.

From the definition we deduce that if f is k-determined then f is A -
equivalent to jkf(0). Thus, when studying FD germs, we can assume with-
out loss of generality that f is the germ of a polynomial mapping. Another
consequence of the definition and of Proposition 2.13 is that if f ∈ E (n, p)
is stable, then it is (p+ 1)-determined.

Finite determinacy is a very desirable property, but usually it is difficult
to check it directly from the defintion. By this reason, the criteria of finite
determinacy are very important. The following criterion is known as the
infinitesimal criterion of finite determinacy. It is due to J. Mather and a
proof can be found in [42, 1.2].

Theorem 3.2. A germ f ∈ E (n, p) is FD if and only if its Ae-codimension
is finite.

Next property is analogous to the Proposition 2.23 and it relates the
finite determinacy of the three classes of map germs: C∞, real analytic
and complex analytic. The proof is based again on the fact that the Ae-
codimension coincides in the three classes [42, 1.7].

Proposition 3.3. Let f ∈ E (n, p) a real analytic germ, then the following
statements are equivalent:
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(1) f is FD as a C∞ germ.
(2) f is FD as a real analytic germ.

(3) The complexification f̂ is FD as a complex analytic germ.

We give now the geometric criterion of finite determinacy of Mather-
Gaffney which works for complex analytic germs. Roughly speaking, it says
that a germ is FD if and only if it has isolated instability at the origin. The
proof can be found in [42, Theorem 2.1].

Theorem 3.4. Let f : (Cn, 0) → (Cp, 0) a complex analytic germ. Then
f is FD if and only if there exists a representative f : U → V where U, V
are open neighbourhoods of the origin in Cn and Cp respectively, such that
f−1(0)∩Σ(f) = {0} and the restriction f : U \f−1(0)→ V \{0} is a locally
stable mapping.

If f : (Rn, 0) → (Rp, 0) is FD and is defined by polynomials, then we

can complexify f̂ : (Cn, 0) → (Cp, 0) and apply the geometric criterion to

f̂ . We deduce that there exists a representative f : U → V where U, V
open neighbourhoods of the origin in Rn and Rp respectively, such that
f−1(0)∩Σ(f) = {0} and the restriction f : U \f−1(0)→ V \{0} is a locally
stable mapping.

The converse is not true in general in the real case. For instance, consider
the function f : (R2, 0) → (R, 0) given by f(x, y) = (x2 + y2)2. We have
f−1(0) = Σ(f) = {0} and the restriction f : R2\{0} → R\{0} is regular and

hence, locally stable. However, f̂−1(0) = Σ(f̂) = {(x, y) ∈ C2 : x2+y2 = 0},
so f is not FD by 3.3 and 3.4.

Since f−1(0) ∩ Σ(f) = {0}, after shrinking the neighbourhoods U, V if
necessary, we can assume that the restriction f : Σ(f)→ V is finite. More-
over, if f : U \f−1(0)→ V \{0} is a locally stable mapping, then the 0-stable
types are isolated points in U \ {0}. But since these sets are semialgebraic,
then by the Curve Selection Lemma [28], we have that the 0-stable types
are also isolated points in U . Thus, we can shrink the neighbourhoods U, V
in such a way that f has no 0-stable singularities in U \ {0}.

This fact motivates the following definition.

Definition 3.5. We say that a germ f ∈ E (n, p) has isolated instability (II)
if there exists a representative f : U → V where U, V are open neighbour-
hoods of the origin in Rn and Rp respectively, such that

(1) f−1(0) ∩ Σ(f) = {0},
(2) the restriction f : Σ(f)→ V is finite,
(3) the restriction f : U \ f−1(0)→ V \ {0} is a locally stable mapping

with no 0-stable singularities.

In such case we also say that f : U → V is a good representative of f . In
the case that f is a polynomial mapping, we also add the condition that the
open sets U, V are semialgebraic.

It follows from the above remarks that any FD germ has II, but the
converse is not true in general.
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Other important definitions related to the finite determinacy are the con-
cepts of finite type singularity and of finite germ. These two concepts cor-
respond to the finite determinacy when we consider the groups K and C
respectively instead of the group A (see [42, Theorem 1.2]).

Definition 3.6. Given f ∈ E (n, p), we say that f has finite singularity type
if

dimR
θ(f)

TKef
< +∞,

where TKef was defined in 2.8. We say that f is finite if

dimRQ(f) < +∞.

Some properties can be deduced immediately from the definitions:

(1) f is FD =⇒ f has finite singularity type.
(2) f is finite =⇒ f has finite singularity type.
(3) f is finite =⇒ n ≤ p.
(4) If n ≤ p, f has finite singularity type =⇒ f is finite.

Properties (1) and (2) are consequence of the fact that the C and the
A -equivalence imply the K -equivalence. Property (3) follows from the fact
that if n > p, then f∗mp is generated by less that n elements and hence,
it cannot have finite codimension. Finally, property (4) is proved in [42,
2.4.(ii)] (note that the case n < p is trivial).

Given a complex analytic germ f : (Cn, 0)→ (Cp, 0), we have that f has
finite singularity type if and only if f−1(0) ∩ Σ(f) = {0} and f is finite if
and only if f−1(0) = {0}. Both properties are consequence of the Hilbert
Nullstellensatz (in the complex analytic version [15, Theorem 3.4.4]).

In the real case we have only one of the implications: if f ∈ E (n, p)
has finite singularity type then f−1(0) ∩ Σ(f) = {0} and if f is finite then
f−1(0) = {0}. Another two very important properties are stated in the next
theorem, the proof can be found in [11, 2.8, 3.1].

Theorem 3.7. Let f ∈ E (n, p).

(1) f has finite singularity type if and only if there exists a stable un-
folding F of f .

(2) If F,G are r-parameter stable unfoldings of f , then F,G are A -
equivalent.

Let f ∈ E (n, p) be of finite singularity type and let F a stable unfolding
of f . Given a stable type represented by the A -class of a stable multi-germ
g : (Rn, S) → (Rp, y), we say that F presents the stable type if for any
representative F : U → V there exists (u; y′) ∈ V such that the multi-germ
fu : (Rn, S′)→ (Rp, y′), with S′ = f−1

u (y′) ∩ Σ(fu), is A -equivalent to g.

Definition 3.8. We say that f ∈ E (n, p) has discrete stable type (DST) if
there exists a stable unfolding F of f which only presents a finite number
of stable types.

Some cases in which f ∈ E (n, p) has DST are:

(1) when (n, p) are nice dimensions or are in the boundary of the nice
dimensions in Mather’s sense [21];

(2) when f has corank 1.
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Definition 3.9. Let f : U → V be a good representative of a germ f ∈
E (n, p) with II and DST. We construct a stratification (A,B) of f defined
as follows:

• The strata B of B are either B = {0}, B = V \ ∆(f) or B is the
analytic stratum in the target of f : (Rn, S) → (Rp, y) for some
y ∈ ∆(f) and S = f−1(y) ∩ Σ(f).
• The strata A of A are either strata of the form A = f−1(B) ∩ Σ(f)

or strata of the form A = f−1(B) \ Σ(f), for some B ∈ B. In
particular, we always have the strata A = {0} and A = f−1(0) \ {0}
(if f−1(0) 6= {0}).

We call (A,B) the stratification by stable types. The fact that f has DST
guarantees that the stratification is finite. If in addition f is polynomial,
then all the strata are semialgebraic sets.

4. The cone structure theorem for map germs with isolated
zeros

In this section, we show the cone structure theorem for FD germs f ∈
E (n, p), with f−1(0) = {0} and DST, following the arguments of Fukuda in
[8]. We fix some notation:

Dp
ε = {y ∈ Rp : ‖y‖2 ≤ ε}, Sp−1

ε = {y ∈ Rp : ‖y‖2 = ε}.

Given a map germ f : (Rn, 0)→ (Rp, 0) we take a representative f : U → V
and put:

D̃n
ε = f−1(Dp

ε ), S̃n−1
ε = f−1(Sp−1

ε ).

We recall that if f ∈ E (n, p) is FD, then after coordinate changes we can
assume that it is polynomial and has II.

Theorem 4.1 ([8]). Let f : U → V a good representative of a polynomial
map germ f ∈ E (n, p) with II, DST and such that f−1(0) = {0}. Then,
there exists ε0 > 0 such that for any ε with 0 < ε ≤ ε0 we have:

(1) S̃n−1
ε is a smooth submanifold diffeomorphic to Sn−1,

(2) f |S̃n−1
ε

: S̃n−1
ε → Sp−1

ε is a stable mapping, whose A -class is inde-
pendent of ε,

(3) f |D̃nε \{0} : D̃n
ε \ {0} → Dp

ε \ {0} is A -equivalent to the product map

id×f |S̃n−1
ε

: (0, ε]× S̃n−1
ε → (0, ε]× Sp−1

ε ,

(4) By adding the origin, f |D̃nε : D̃n
ε → Dp

ε is C0-A -equivalent to the

cone of f |S̃n−1
ε

.

Proof. Let (A,B) be the stratification by stable types of f : U → V , which
has a finite number of semialgebraic strata. We consider the polynomial
function g : U → R given by g = ‖f‖2 and its restriction g|Ai : Ai → R to
each stratum Ai of A. By the Curve Selection Lemma [28], each g|Ai has a
finite number of critical values. Thus, there exists ε0 > 0 such that for any
ε with 0 < ε ≤ ε0, ε is a regular value of g and g|Ai for all Ai ∈ A.

Since ε is a regular value of g, S̃n−1
ε = g−1(ε) is a hypersurface in U .

Moreover, the condition that ε is a regular value of g|Ai , for all Ai ∈ A, is

equivalent to that Sp−1
ε is transverse to all the strata Bi of B. By Proposition



16 J.J. NUÑO-BALLESTEROS

2.22, the restriction f |S̃n−1
ε

: S̃n−1
ε → Sp−1

ε is stable. Thus, we have showed

the first part of (2).

To see (1), we use Reeb’s theorem [26, pag. 25]. Since f−1(0) = {0},
0 is an isolated minimum of g. Then, D̃n

ε = g−1([0, ε]), is homeomorphic

to the closed disk Dn. Thus, S̃n−1
ε = ∂D̃n

ε is homeomorphic (and hence
diffeomorphic) to Sn−1.

It only remains to show the second part of (2) and (3), since (4) is an
immediate consequence of (3). We set I = (0, ε] and consider the following
diffeomorphisms:

Φ : D̃n
ε \ {0} −→ I × S̃n−1

ε , Ψ : Dp
ε \ {0} −→ I × Sp−1

ε ,

x 7−→ (g(x), φ(x)), y 7−→ (‖y‖2,
√
ε
y

‖y‖
),

where φ(x) is the point of S̃n−1
ε where the integral curve of the gradient of

g passing through x meets S̃n−1
ε . We define F : I × S̃n−1

ε → I × Sp−1
ε as

F = Ψ◦f ◦Φ−1. By construction, we have that F ({t}× S̃n−1
ε ) ⊂ {t}×Sp−1

ε ,
for any t ∈ I. This implies that F can be written in the form F (t;x) =

(t; ft(x)), with ft : S̃n−1
ε → Sp−1

ε and t ∈ I.
It is obvious that ft is A -equivalent to f |S̃n−1

t
and thus, ft is stable.

In particular, the unfolding F must be trivial, that is, there exist diffeo-
morphisms H : I × S̃n−1

ε → Ĩ × Sn−1
ε and K : I × Sp−1

ε → I × Sp−1
ε

of the form H(t;x) = (t;ht(x)) and K(t; y) = (t; kt(y)) and such that
K ◦ F ◦ H−1 = id×fε. Hence, we have (3). The second part of (2) fol-
lows form the fact that kt ◦ ft ◦ h−1

t = fε. �

Definition 4.2. Let f : U → V a good representative of a polynomial map
germ f ∈ E (n, p) with II, DST and such that f−1(0) = {0}. We say that

ε0 > 0 is a Milnor-Fukuda radius for f if for any ε with 0 < ε ≤ ε0, Sp−1
ε is

transverse to the stratification by stable types of f .
We also say that the mapping f |S̃n−1

ε
: S̃n−1

ε → Sp−1
ε is the link of f and

denote it by L(f). It follows from Theorem 4.1 that:

(1) the link is a stable mapping between spheres,
(2) the link is well defined up to A -equivalence,
(3) the germ f is C0-A -equivalent to the cone of its link.

We include now a couple of important remarks with respect to Theorem
4.1 and the definition of the link.

Remark 4.3. The condition f−1(0) = {0} is always satisfied if f ∈ E (n, p)
is FD and n ≤ p. In the case n > p, we may have the two possibilities,
either f−1(0) = {0} or f−1(0) 6= {0}. We will give another version of the
cone structure theorem for the case f−1(0) 6= {0} in the last section.

Remark 4.4. If f is real analytic instead of polynomial, then the theorem is
still valid, it is enough to use the semianalytic version of the Curve Selection
Lemma. When f is only of class C∞, if f is FD, f is A -equivalent to a
polynomial map and hence, the theorem is valid for a representative of a
germ which is A -equivalent to f . If we want to apply the theorem directly
to a representative f : U → V of f , then we have to change the spheres
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Sp−1
ε by hypersurfaces Pε ⊂ V diffeomorphic to the sphere Sp−1 (since the

diffeomorphisms do not preserve spheres in general).
More exactly, there exists a function called control function ρ : V → R

with a unique critical point of Morse type in the origin, which plays the role
of the function ‖y‖2 in the analytic case. We consider g = ρ ◦ f : U → R
and choose ε0 > 0 in such a way that for all ε with 0 < ε ≤ ε0, ε is a regular
value of g|Ai for all Ai ∈ A. The hypersurfaces Pε are defined as Pε = ρ−1(ε)
and are diffeomorphic to Sp−1. Then, the inverse image Nε = f−1(Pε) is
diffeomorphic to Sn−1, the restriction f |Nε : Nε → Pε is stable and f is
topologically equivalent to the cone of f |Nε .

Remark 4.5. If f has no DST, then the theorem is still valid with the
only difference that the link f |S̃n−1

ε
: S̃n−1

ε → Sp−1
ε is C0-stable instead of

stable. The proof in this case can be adapted by using the Mather canonical
stratification (see [11]) instead of the stratification by stable types. We leave
the details of this construction for the reader.

Next corollary is an immediate consequence of Theorem 4.1.

Corollary 4.6. Let f, g ∈ E (n, p) be two FD germs with f−1(0) = g−1(0) =
{0}. If L(f), L(g) are C0-A -equivalent, then f, g are C0-A -equivalent.

Exemple 4.7. Let f ∈ E (1, 1) be a FD germ, then the link is a mapping
γ : S0 → S0. Since that S0 = {−1, 1}, we have only two non equivalent
possibilities, namely, either γ = id or γ = constant. In fact, if f is FD, then
the infinite jet j∞f(0) 6= 0. Thus, we have that j∞f(0) = akx

k + . . . , with
ak 6= 0, and f is A -equivalent to xk. We have

γ =

{
id, if k is odd,

constant, if k is even.

Basically, this is the well known criterion by the Calculus students for the
existence of local maxima, minima or inflections in one variable functions
(fig. 4).

Figure 4. Graph of f ∈ E (1, 1) when k even (left) and k odd (right)

Exemple 4.8. Given a FD germ f ∈ E (1, 2), its link is a non constant
mapping γ : S0 → S1. In this case, two non constant mappings γ1, γ2 : S0 →
S1 are always C0-A -equivalent, it is enough to take any homeomorphism
from S1 to S1 which takes two points in other two points. As a consequence,
there exists a unique topological class of FD germs f ∈ E (1, 2) (fig. 5).
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Figure 5. The link of a FD germ f ∈ E (1, 2)

Exemple 4.9. Given a FD germ f ∈ E (2, 1) such that f−1(0) = {0},
the link is a constant mapping γ : S1 → S0 and again we have only one
topological class (fig. 6).

f

Figure 6. A FD germ f ∈ E (2, 1) with f−1(0) = {0}

We conclude this section with the main open questions related to the
topological classification of FD germs f ∈ E (n, p) with isolated zeros:

(1) Find a good combinatorial model which codifies all the topological
information of a stable mapping γ : Sn−1 → Sp−1 (and hence, of the
germ f).

(2) Determine the stable mappings γ : Sn−1 → Sp−1 which can be
realized as the link of a FD germ f , with f−1(0) = {0}.

(3) Determine if the converse of Corollary 4.6 is true or not, that is, if
f, g are C0-A -equivalent, then does this imply that L(f), L(g) are
C0-A -equivalent?

(4) Find relations between analytic invariants of f (corank, 0-stable in-
variants, Ae-codimension, etc.) and the topological invariants of the
link (number of 0-stable singularities, Vassiliev invariants, etc.).

(5) Study the topological transitions in 1-parameter families of FD germs,
in particular, study the topological triviality of the family.
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5. Gauss words

Let f ∈ E (2, 3) be FD germ. Then the link is a stable map γ : S1 → S2,
that is, γ defines a closed regular curve in S2 with only transverse double
points or crossings. We call such type of curves doodles. The topological
classification of doodles in the sphere S2 (or in the plane R2) is well known
since Gauss time [10]. The combinatorial model is given by the so-called
“Gauss words”. Most the results of this section appear in the paper [22].

Definition 5.1. Let γ : S1 → S2 be a doodle with r crossings. We choose
r letters a1, . . . , ar to label the crossings, orientations in S1 and S2, and a
base point z0 ∈ S1. We define the Gauss word as the sequence of crossings
starting from the base point and following the orientation of the curve. Each
letter ai appears twice, one with exponent +1 and another one with exponent
−1, according to the orientation of the two branches near the crossing in
the sphere S2 (see fig. 7).

base point

a

b

c Gauss word:  a bc ab c -1 -1 -1

-+

Figure 7. Gauss word of the trefoil

It is obvious that the Gauss word is not uniquely defined since it depends
on the choice of the labels of the crossings, the base point and the orienta-
tions in S1, S2. Different choices will produce the following changes in the
Gauss word:

(1) permuting the alphabet set a1, . . . , ar;
(2) cyclically permuting the sequence;
(3) reversing the sequence;
(4) changing all the exponents from +1 to −1 and vice versa.

We say that two Gauss words are equivalent if they related by means of
these four operations. Up to this equivalence, the Gauss word is now well
defined. Moreover, the following theorem shows that the Gauss words pro-
vide a complete invariant in the topological classification of doodles in the
sphere.

Theorem 5.2 (Gauss Theorem). Two doodles on the sphere are C0-A -
equivalent if and only if their Gauss words are equivalent.

Proof. Let γ, δ : S1 → S2 be two doodles which are C0-A -equivalent. There
exist homeomorphisms α : S1 → S1 and β : S2 → S2 such that δ =
β ◦ γ ◦ α−1. We start with γ and we choose letters a1, . . . , ar to label the
crossings, a base point z0 ∈ S1 and orientations in S1, S2, so that we have
the Gauss word of γ. Since β takes crossings of γ into crossings of δ, we can
choose for each crossing of δ the same letter of the corresponding crossing
in γ through β. We also take α(z0) ∈ S1 as the base point of δ. Finally, we
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choose in S1, S2 the orientations induced by α, β respectively. With these
choices, we have that the Gauss word of δ is equal to the Gauss word of γ.

To see the converse, we first observe that each doodle γ : S1 → S2 has
a natural CW-structure: in S1 the 0-cells are the inverse images of the
crossings and the 1-cells are the connected components of the complement.
In S2, the 0-cells are the crossings, the 1-cells are the edges of the curve
joining the crossings and the 2-cells are the connected components of the
complement of the curve (this is possible because the curve is a connected
graph).

It follows that the CW-structure of S2 can be read from the Gauss word.
In fact, the 0-cells are given by the letters a1, . . . , ar, each 1-cell is an oriented
edge defined by two consecutive letters aεia

η
j in the Gauss word (including

the oriented edge joining the last with the first letter) and each 2-cell is
a face which is determined by a closed sequence of oriented edges or their
inverses.

Assume now that γ, δ : S1 → S2 have the same Gauss word. Then the two
S2 are isomorphic as CW-complexes with the CW-structure induced by γ, δ.
We choose any cellular homeomorphism β : S2 → S2. Then we construct
another cellular homeomorphism α : S1 → S1 such that δ = β ◦ γ ◦ α−1. In
fact, on each 1-cell E, α is univocally defined as α|E = (δ−1 ◦ β ◦ γ)|E and
then α is extended by continuity to the 0-cells.

If γ, δ : S1 → S2 have equivalent Gauss words, then we can take homeo-
morphisms α : S1 → S1 and β : S2 → S2 such that β ◦ γ ◦ α−1 and δ have
the same Gauss word. Then, we apply the above argument to these two
doodles. �

Exemple 5.3. In the trefoil (see fig.7), the CW-structure on the sphere is
constructed from the Gauss word a−1bc−1ab−1c as follows:

(1) we have three 0-cells given by a, b and c;
(2) we have six 1-cells given by a−1b, bc−1, c−1a, ab−1, b−1c and ca−1;
(3) there are five 2-cells given by three 2-gons {ab−1, ba−1}, {bc−1, cb−1},
{ca−1, ac−1} and two triangles {a−1b, b−1c, c−1a}, {a−1c, c−1b, b−1a}.

The theorem is not true for doodles in the plane R2. For instance, the
two doodles in fig. 8 are topologically equivalent on the sphere and have
the same Gauss word aa−1, but they are not topologically equivalent on the
plane (in fact, they have different Whitney index).

Figure 8. Two non equivalent doodles in the plane with the
same Gauss word aa−1

We show in fig. 9 the classification of doodles in the sphere with up to
three crossings. There are 10 non equivalent doodles and their corresponding
Gauss words are the following;

(a) ∅
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(b) aa−1

(c) ab−1ba−1

(d) abb−1a−1

(e) ab−1cc−1ba−1

(f) ab−1c−1cba−1

(g) abcc−1b−1a−1

(h) ab−1ca−1bc−1

(i) aa−1bb−1cc−1

(j) aa−1b−1bcc−1

(a)                     (b)                        (c)                         (d)

(e)                        (f )                                   (g) (h)                    (i)                       (j)

Figure 9. Doodles with up to three crossings

Gauss was interested in the problem of “planarity” of Gauss words: deter-
mine the words which can be realized as the word of a doodle in the sphere
(or in the plane). It is well known that any Gauss word can be realized as
the word of a doodle in some orientable compact surface of genus g. For
instance, the word aba−1b−1 cannot be realized in the sphere (or the plane),
but it can be realized in the torus (see fig. 10).

a

b

Figure 10. A doodle in the torus with Gauss word aba−1b−1

Gauss could not solve the planarity problem, but he only was able to find
a necessary condition. The planarity problem was completely solved by M.
Dehn in 1936 [6]. The planarity problem of Gauss words is of the same nature
as the planarity problem of graphs (Kuratowski Theorem). Nowadays, the
Gauss words constitute a very active field of research in Computational
Geometry.

Definition 5.4. Given a FD germ f ∈ E (2, 3), we define the Gauss word
of f as the Gauss word of the doodle of f .
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It follows from Gauss Theorem that if two map germs have equivalent
Gauss words, then they are C0-A -equivalent. We will see that the converse
is also true. But to to this we need to analyze the structure of a FD germ.

We begin with the characterization of stable singularities. We see that a
C∞ mapping f : N2 → P 3 is stable if and only if it is semiregular in the
sense of Whitney [45]: f is an immersion with normal crossings, except at
isolated points, where f presents singularities of type cross-cap or Whitney
umbrella. At each of this points, the germ of f is A -equivalent to the germ
in E (2, 3) given by (x, y) 7→ (x, y2, xy) (see fig. 11).

Figure 11. Stable singularities of surfaces in R3

Theorem 5.5. The only stable multi-germs from R2 to R3 are: regular
simple point, transverse double point, transverse triple point and cross-cap.

Proof. We first show that a singular germ f ∈ E (2, 3) is stable if and only if
it has cross-cap type. After coordinate changes in the source and the target,
we can assume that f is given by the standard parametrization f(x, y) =
(x, y2, xy), then:

TKef = E2


 1

0
y

 ,

 0
2y
x

+ 〈x, y2〉E 2
2

= E2


 1

0
y

 ,

 0
x
0

 ,

 0
y
0

 ,

 0
0
x

 ,

 0
0
y2

 .

We have that θ(f)/TKef is generated over R by the classes of the canonical
basis {e1, e2, e3}, hence ωf is surjective and f is stable by Lemma 2.9.

To see the converse, suppose first that f is stable and has rank 0. Then
TKef ⊂ m2θ(f). Since θ(f)/m2θ(f) has dimension 3, we must have neces-
sarily that TKef = m2θ(f). Moreover, (f∗m3) ⊂ m2

2θ(f), hence the classes
of ∂f/∂x and ∂f/∂y should generate m2θ(f)/m2

2θ(f) over R. But this is not
possible, since this space has dimension 6.

Thus, if f is stable, it must have rank 1 and after a coordinate change
in the source, we can assume that f(x, y) = (x, g(x, y)), for some germ
g ∈ E (2, 2). In other words, we see f as an unfolding of g0(y) = g(0, y). In
particular, we have:

θ(f)

TKe(f)
∼=

θ(g0)

TKe(g0)
∼=

E 2
1

〈g′0〉
.

If g0 ∈ m3
1E

2
1 , then g′0 ∈ m2

1E
2
1 and thus dimR(E 2

1 /〈g′0〉) ≥ 4, which is not
possible by the surjectivity of ωf . Hence, g0 must have order 2. But this
implies that Q(f) ∼= E1/〈y2〉, hence f is A -equivalent to the cross-cap by
Theorem 2.11.
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We consider now multi-germs f : (R2, S)→ (R3, y), with S ⊂ R2 a finite
set. If one of the points xi ∈ S is singular, then f has cross-cap type
at xi and the analytic stratum is only the point {xi}. Thus, the regular
intersection condition of Theorem 2.15 implies that S = {xi}. Otherwise, if
all the points of S are regular, then f is an immersion with normal crossings
and we find the remaining types: regular simple point, transverse double
point and transverse triple point. �

Assume now that f ∈ E (2, 3) is FD. The 0-stable types are the cross-
caps and the triple points. Thus, a good representative of f is a mapping
f : U → V where U ⊂ R2 and V ⊂ R3 are open neighbourhoods of the
origin such that:

(1) f−1(0) = {0},
(2) f : U → V is proper,
(3) f : U \ {0} → V \ {0} is an immersion with only transverse double

points.

An important set associated with f is the double point curve, which is
defined as

D(f) = {z ∈ U : f−1(f(z)) 6= {z}} ∪ S(f),

where S(f) is the singular set. Then D(f) is a closed subset of U . Since
f is a good representative, it follows that S(f) = {0} and that D(f) \ {0}
is a 1-dimensional submanifold of U . By shrinking the neighbourhoods if
necessary, we can assume that all the connected components of D(f) \ {0}
are arcs going from the origin to the boundary of U .

Moreover, f restricted to each connected component is a diffeomorphism,
so that the image f(D(f)) \ {0} is also a 1-dimensional submanifold of V ,
whose connected components are arcs going from the origin to the boundary
of V (since f is proper). Moreover, the restriction f : D(f)\{0} → f(D(f))\
{0} is a 2-fold covering. The connected components of D(f) (resp. f(D(f)))
are called half-branches of D(f) (resp. f(D(f))).

We claim that we can recover the Gauss word of f just by looking at the
relative position of the half-branches of D(f) and f(D(f)) and the orien-
tation of the leaves of f(U) at each half-branch. In fact, each half-branch
of f(D(f)) corresponds to a crossing in the doodle of f . So, we can choose
letters a1, . . . , ar to label the half-branches. We also choose orientations in
U, V and a base point in U . Then, we construct the Gauss word as the
sequence of letters according to the relative position of the half-branches of
D(f) in U , starting from the base point and following the orientation in
U . Moreover, we put the exponent +1 if the two leaves of f(U) intersect
positively along the half-branch or −1 otherwise. It is obvious that the word
obtained with this method is exactly the Gauss word of f (see fig. 12).

Assume now that we have two FD f, g ∈ E (2, 3) which are C0-A -equivalent.
Then, the homeomorphisms must preserve the double point sets D(f) and
f(D(f)). An argument analogous to that of the proof of Theorem 5.2 gives
that f, g have the same Gauss word (up to equivalence). Thus, we have
proved the following theorem (see [22, Corollaries 3.4 and 3.8]).

Theorem 5.6. Let f, g ∈ E (2, 3) be two FD germs. The following state-
ments are equivalent:



24 J.J. NUÑO-BALLESTEROS

Figure 12. Orientation of the branches

(1) f, g are C0-A -equivalent,
(2) the doodles of f, g are C0-A -equivalent,
(3) f, g have equivalent Gauss words.

Exemple 5.7. All the doodles with up to three crossings (see fig. 9) are
realizable as the link of a FD map germ f ∈ E (2, 3):

(a) (x, y, 0), (b) (x, y2, xy),
(c) (x, y2, y(x2 − y2)), (d) (x, xy + y3, xy3 + 3

2y
5),

(e) (x, y2, xy(x2 − y2)), (f) (x, x4 − 6x2y2 + y4, x3y − xy3),
(g) (x, x4 − 6x2y2 + y4, x3y − xy3), (h) (x, xy + y3, xy2 + 3

4y
4),

(i) (x, xy + y3, xy2 + 5
4y

4), (j) (x2, xy + y3, 1
2x

3 + 1
4x

2y + 3xy3 + 3y5).

To check this, we use a tailor-made computer program SphereXSurface

by A. Montesinos-Amilibia [30], which pictures the doodle of any map. We
remark that all of them except “Mickey” (j) admit a corank 1 realization.
We do not know, up to now, if it is also possible to find a corank 1 realization
for this doodle.

To finish this section, we see the topological classification of all FD germs
f ∈ E (2, 3) with Boardman type Σ1,0. We recall the definition of Boardman
symbol of order 2.

Definition 5.8. Given f ∈ E (n, p), let M1, . . . ,Mr be the minors of order

n − i + 1 of the Jacobian matrix of f and set f̃ = (f1, . . . , fp,M1, . . . ,Mr).
We say that it has Boardman type Σi,j if

dimR ker df(0) = i, dimR ker df̃(0) = j.

The following lemma is due to Mond [29] and gives a prenormal form for
all germs with Boardman type Σ1,0.

Lemma 5.9. Let f ∈ E (2, 3) be a germ with Boardman type Σ1,0. Then f
is A -equivalent to a map germ of the form

f̃(x, y) = (x, y2, yp(x, y2)),

for some p ∈ E2.

Proof. The condition that dimR ker df(0) = 1 implies that f has corank 1,
then after A -equivalence, f can be written in the form

f(x, y) = (x, g(x, y), h(x, y)),
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for some g, h ∈ m2
2. Then the 2-minors of the Jacobian matrix are gy, hy,

gxhy − gyhx, where the subscripts mean the partial derivatives. Then, an
easy computation shows that f has Boardman type Σ1,0 if and only if either
gyy(0) 6= 0 or hyy(0) 6= 0.

Assume, for instance, that gyy(0) 6= 0. Then, we can write

f(x, y) = (x, ax2 + 2bxy + cy2 + g̃(x, y), h(x, y)),

where g̃ ∈ m3
2 and c 6= 0. If c > 0, we put

ax2 + 2bxy + cy2 = (
b√
c
x+
√
cy)2 + (a− b2

c
)x2,

then the coordinate change in the source given by ȳ = (b/
√
c)x +

√
cy,

followed by the coordinate change in the target given by Ȳ = Y−(a−b2/c)X2

transform f into:

(x, y) 7→ (x, y2 +G(x, y), H(x, y)),

for some G ∈ m3
2 and H ∈ m2

2.
Now we use the fact that the fold (x, y) → (x, y2) is 2-determined. This

implies that there are coordinate changes in the source and the target which
transform the above map germ into:

(x, y) 7→ (x, y2,K(x, y)),

for some K ∈ m2
2. Finally, by the Malgrange Preparation Theorem, we split

K as

K(x, y) = K1(x, y2) + yK2(x, y2).

We take the coordinate change in the target given by Z̄ = Z −K1(X,Y ),
which now transforms the map germ into

(x, y) 7→ (x, y2, yK2(x, y2)).

�

Theorem 5.10 ([22]). Any FD germ f ∈ E (2, 3) with Boardman type Σ1,0

has a doodle of type “warm” (see fig. 13). In particular, two FD germs with
Boardman type Σ1,0 are C0-A -equivalent if and only if their double point
curves have the same number of half-branches.

Figure 13. Singularity of type Σ1,0 with six crossings
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Proof. We can assume f(x, y) = (x, y2, yp(x, y2)). We consider f : U → V a
good representative and ε > 0 a Milnor-Fukuda radius. The doodle is given
by f |S̃1

ε
: S̃1

ε → S2
ε . We have D(f) = {(x, y) : p(x, y2) = 0} and

S̃1
ε = {(x, y) : x2 + y4 + y2p(x, y2)2 = ε2},

and both sets are symmetric with respect to the x-axis.
We choose z0 = (ε, 0) as the base point of S̃1

ε . The crossings of the doodle

are determined by D(f) ∩ S̃1
ε , which gives: z1, . . . , zr and z1, . . . , zr, with

zi = (xi, yi), zi = (xi,−yi), −ε < xr ≤ · · · ≤ x1 < ε, yi ≥ 0.

X

Z

f (z )0a1a2ar ...f (-z )0

x

y

z0-z0

z1

z1

z2

z2
zr

zr
...

...

fD ( f )2

S~1
ε S 2

ε

Y = 0

Figure 14. Configuration of the crossings

This implies that the Gauss word of the doodle (up to the signs) is equal
to:

a1a2 . . . arar . . . a2a1,

where ai = f(zi) = f(zi) (see fig. 14). The doodle has the following
properties:

• The doodle is contained in the hemisphere Y ≥ 0 of S2
ε and intersects

the equator Y = 0 at the base point f(z0) and its opposite f(−z0).
• The doodle is symmetric with respect to the meridian Z = 0.
• The doodle intersects the meridian Z = 0 only at the double points
a1, . . . , ar, together with f(z0) and f(−z0). Moreover, they present
the following relative position on the meridian:

f(−z0) < ar < · · · < a1 < f(z0).

The only possible doodles which satisfy these properties are those of type
“warm”, with Gauss word:

a1a
−1
2 . . . a±1

r a∓1
r . . . a2a

−1
1 .

�

We remark that any doodle of type “warm” with r is crossings is realizable
as the link of a FD f ∈ E (2, 3). In fact, we consider:

f(x, y) = (x, y2,=((x+ iy)r+1)),

where =(z) is imaginary part of z ∈ C. Then, we have

p(x, y2) = =((x+ iy)r+1)/y =
r∏

k=1

(− sin(
kπ

r + 1
)x+ cos(

kπ

r + 1
)y),



COMBINATORIAL MODELS IN THE TOPOLOGICAL CLASSIFICATION 27

hence D(f) = {(x, y) : p(x, y2) = 0} has exactly 2r half-branches.

6. Reeb graphs

In this section we consider the topological classification of FD germs f ∈
E (3, 2) with isolated zeros, that is, f−1(0) = {0}. By Theorem 4.1, the link
is a stable mapping γ : S2 → S1, that is, it has only Morse singularities
with distinct critical values. The combinatorial model to describe this type
of mappings is given by the Reeb graph. The Reeb graph was introduced by
Reeb in [37] and it is well known that it is a complete topological invariant
for Morse functions from S2 to R (see [1, 39]). In this section we extend the
concept of Reeb graph for stable maps from S2 to S1. All the results of this
section appear in the paper [2].

The following result is probably well known for fibre bundles (that is,
locally trivial fibrations), but we include here a elementary proof for the
sake of completeness.

Lemma 6.1. Let p : E → B be a fibre bundle with fibre F , where B,E, F
are all finite CW-complexes. Then,

χ(E) = χ(B)χ(F ).

Proof. After subdivision, we can choose a finite covering {Ui}ki=1 of B which
trivializes the fibre bundle and such that each Ui is a subcomplex of B. For
each i, there exists a homeomorphism ϕi : p−1(Ui) → Ui × F such that
π1 ◦ ϕi = p, where π1 is the projection onto the first factor. In particular,
we have that p−1(A) is homeomorphic to A×F , for any subset A ⊆ Ui and
i = 1, . . . , k.

Let Bi = ∪ij=1Uj , then we see that χ(p−1(Bi)) = χ(Bi)χ(F ) by induction
on i. In fact, this is true for i = 1 and if we assume it for i, then

χ(p−1(Bi+1)) = χ(p−1(Bi)) + χ(p−1(Ui+1))− χ(p−1(Bi ∩ Ui+1))

= χ(Bi)χ(F ) + χ(Ui+1)χ(F )− χ(Bi ∩ Ui+1)χ(F )

= (χ(Bi) + χ(Ui+1)− χ(Bi ∩ Ui+1))χ(F )

= χ(Bi+1)χ(F ).

�

Proposition 6.2. Let γ : S2 → S1 be a stable map. Then γ is not a regular
map.

Proof. Suppose γ is a regular map, then γ(S2) ⊂ S1 would be an open set.
Since γ(S2) is also closed, we get γ(S2) = S1 and hence, γ is surjective. By
Ehresmann’s fibration theorem [7, page 31], f is a smooth fibre bundle. In
particular, if F is the fiber, we have by Lemma 6.1 that

2 = χ(S2) = χ(S1)χ(F ) = 0,

which is an absurd. �

Given a continuous map f : X → Y between topological spaces, we
consider the following equivalence relation on X: x ∼ y if f(x) = f(y) and
x and y are in the same connected component of f−1(f(x)).
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Proposition 6.3. Let γ : S2 → S1 be a stable map. Then the quotient
space S2/ ∼ admits the structure of a connected graph in the following way:

(1) the vertices are the connected components of level curves γ−1(v),
where v ∈ S1 is a critical value;

(2) each edge is formed by points that correspond to connected compo-
nents of level curves γ−1(v), where v ∈ S1 is a regular value.

Proof. Since γ is stable we have a finite number of critical values v1, . . . , vr
and for each i = 1, . . . , r, γ−1(vi) has a finite number of connected compo-
nents. Then,

γ|S2 − γ−1({v1, . . . , vr}) : S2 − γ−1({v1, . . . , vr})→ S1 − {v1, . . . , vr}

is regular, and the induced map

γ̃ : (S2 − γ−1({v1, . . . , vr}))/ ∼→ S1 − {v1, . . . , vr}

is a local homeomorphism. Each connected component of S1 − {v1, . . . , vr}
is homeomorphic to an open interval, so each connected component of (S2−
γ−1({v1, . . . , vr}))/ ∼ is also homeomorphic to an open interval.

�

Each vertex of the graph can be of three types, depending on if the con-
nected component has a maximum/minimum critical point, a saddle point or
just regular points. Then, the possible incidence rules of edges and vertices
are given in fig. 15.

b c

Figure 15. Incidence rules for the three types of vertices

Let v1, . . . , vr ∈ S1 be the critical values of γ. We choose a base point
v0 ∈ S1 and an orientation. We can reorder the critical values such that
v0 ≤ v1 < . . . < vr and we label each vertex with the index i ∈ {1, . . . , r}, if
it corresponds to the critical value vi.

Definition 6.4. The graph given by S2/ ∼ together with the the labels of
the vertices, as previously defined, is said to be the generalized Reeb graph
associated to γ : S2 → S1 (see fig. 16).

For simplicity, from now on we will just call Reeb graph to the generalized
Reeb graph, unless otherwise specified.

Proposition 6.5. Let γ : S2 → S1 be a stable map. Then the Reeb graph
of γ is a tree.
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1
2
3

4

1

2
2

3

4

S1S2

γ

Figure 16. Example of Reeb graph of a stable map γ : S2 → S1

Proof. Let Γ be the Reeb graph of γ. Since Γ is connected, in order to
show that Γ is a tree, we only need to prove that its Euler characteristic
is χ(Γ) = 1. We have that χ(Γ) = V − E, where V,E are the number of
vertices and edges of Γ, respectively.

On one hand, V = M + S+ I where M,S, I are the numbers of vertices
of each type: maximum/minimum, saddle or regular, respectively. Note
that V 6= 0 by Proposition 6.2.

On the other hand, by Euler’s formula E = 1
2

∑
deg(vi) where vi are

the vertices of Γ and deg(vi) is the degree of vi, that is, the number of
edges adjacent to vi. Since γ is stable, the degree of each vertex of maxi-
mum/minimum type is 1, while of regular type is 2 and of saddle type is 3
(see fig. 15). Hence,

χ(Γ) = V − E = M + S + I − 1

2
(M + 2I + 3S) =

M − S

2
= 1,

where the last equality follows from the Morse formula: M − S = χ(S2) =
2. �

Remark 6.6. The classical Reeb graph is defined in the same way, but
the vertices are just the connected components of level curves γ−1(v) which
contain a critical point. Hence, our generalized Reeb graph contains some
extra vertices corresponding to the regular connected components of γ−1(v),
where v is a critical value. Of course the classical Reeb graph can be obtained
from the generalized one just by eliminating the extra vertices and joining
the two adjacent edges. But in general, the generalized Reeb graph provides
more information.

We present in fig. 17 two examples of stable maps γ1, γ2 : S2 → S1 with
their respective generalized Reeb graphs. Both examples share the same
classical Reeb graph, but the generalized Reeb graphs are different. The
example on the left hand side is a non-surjective map, whilst the map on
the right hand side is surjective, therefore the maps are not topologically
equivalent. This shows that the classical Reeb graph is not sufficient to
distinguish between these two examples.
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Notice that if γ : S2 → S1 is not surjective, then γ may be regarded as
a Morse function from S2 to R (via stereographic projection). In this case,
the generalized Reeb graph can be deduced from the classical one just by
adding the extra vertices each time that one passes through a critical value.

S2

1

2

/~

1

2
S2

S1

/~S2

S2
S1

2 2

1 1

2

1

γ

γ

γ

γ

1

1

2

2

_ _

Figure 17. Two non-equivalent stable maps with the same
classical Reeb graph

It is obvious that labeling of vertices of the Reeb graph is not uniquely
determined, since it depends on the chosen orientations and the base points
on each S1. Different choices will produce either a cyclic permutation or a
reversion of the labeling in the Reeb graph. This leads us to the following
definition of equivalent Reeb graphs.

Let γ, δ : S2 → S1 be two stable maps. Let Γγ and Γδ be their respective
Reeb graphs. Consider the induced quotient maps γ̄ : Γγ → S1

γ and δ̄ :

Γδ → S1
δ , where S1

γ , S
1
δ is S1 with the graph structure whose vertices are the

critical values of γ, δ respectively (as illustrated in fig. 17).

Definition 6.7. We say that Γγ is equivalent to Γδ and we denote it by
Γγ ∼ Γδ, if there exist graph isomorphisms j : Γγ → Γδ and l : S1

γ → S1
δ ,

such that the following diagram is commutative:

Vγ
γ̄|Vγ−−−−→ ∆γ

j|Vγ
y yl|∆γ
Vδ

δ̄|Vδ−−−−→ ∆δ

where Vγ = {vertices of Γγ}, Vδ = {vertices of Γδ} and ∆γ and ∆δ are their
respective discriminant sets.

Theorem 6.8. Let γ, δ : S2 → S1 be two stable maps. If γ and δ are C0-A -
equivalent then their respective Reeb graphs are equivalent.

Proof. Since γ and δ are topologically equivalent there exist homeomor-
phisms h : S2 → S2 and k : S1 → S1 such that k ◦ γ ◦ h = δ. Then h maps
critical points into critical points and k maps critical values into critical val-
ues. Hence h induces a graph isomorphism from Γγ to Γδ and k induces a
graph isomorphism from S1

γ to S1
δ which gives the equivalence between the

Reeb graphs. �
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The above theorem allows us to extend the definition of Reeb graph for
C0-stable maps between topological spheres.

Definition 6.9. Let γ : M → P be a continuous map, where M is homeo-
morphic to S2 and P is homeomorphic to S1. We say that γ is C0-stable if
there exist a C∞-stable map δ : S2 → S1 and homeomorphisms k : M → S2,
h : P → S1 such that the following diagram is commutative

M
γ−−−−→ P

k

y yh
S2 δ−−−−→ S1

We say that y ∈ P is a critical value of γ if h(y) is a critical value of δ.
Moreover, M/ ∼ has a graph structure induced by the Reeb graph of δ.
We call this graph the Reeb graph of γ and denote it by Γγ . The notion
of equivalence of graphs given in Definition 6.7 can be also extended for
C0-stable maps in the obvious way. By Theorem 6.8, the Reeb graph Γγ is
well defined up to equivalence of graphs.

The main result is the following theorem which says that the Reeb graph
is a complete invariant for A -equivalence of stable maps from S2 to S1.
The idea of the proof is that we can “inflate” the Reeb graph and then
recover the surface together with the stable map. Near each vertex, we have
a Morse singularity and the local normal form is given in fig. 14. Along the
edges, the map is regular, so we have pieces of “tubes” which connect the
singularities. The detailed proof, although intuitive, is rather technical and
in fact is an adaptation of the proof of [14, Theorem 4.1]. All the details
can be found in [2, Theorem 3.8].

Theorem 6.10. Let γ, δ : S2 → S1 be two stable maps such that Γγ ∼ Γδ.
Then γ is A -equivalent to δ.

As we said before, the two theorems 6.8 and 6.10 together give that the
Reeb graph is a complete topological invariant for stable maps from S2 to
S1. In fact, we have a little bit more, as we can see in the following corollary.

Corollary 6.11. Let γ, δ : S2 → S1 be two stable maps. Then the following
statements are equivalent:

(1) γ, δ are A -equivalent,
(2) γ, δ are C0-A -equivalent,
(3) Γγ ∼ Γδ.

In the last part of this section, we consider the Reeb graph of the link of
a finitely determined map germ with isolated zeros.

Definition 6.12. Given a FD germ f ∈ E (3, 2) with f−1(0) = {0}, we
define the Reeb graph of f as the Reeb graph of the link of f .

It follows from Theorem 6.10 and Corollary 4.6 that if two FD germs have
equivalent Reeb graphs, then they are C0-A -equivalent. Again in this case
we can show the converse. But we need to see how is the structure of a FD
germ in this case. The first step is to describe the stable singularities. The
characterization of stable singularities of maps from R3 to R2 is well known
(cf. [12]) and it is given by:
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Theorem 6.13. Let f : (R3, S) → (R2, 0) be a C∞ multi-germ germ such
that f is singular at each point of S. Then, f is stable if only if |S| ≤ 2 and
f is A -equivalent to one of the following normal forms:

(1) For |S| = 1:
• (x, y2 + z2), called definite fold D;
• (x, y2 − z2), called indefinite fold I;
• (x, y3 + xy + z2), called cusp.

(2) For |S| = 2:
• (x1, y

2
1 + z2

1), (y2
2 + z2

2 , x2), called double-fold D&D;
• (x1, y

2
1 + z2

1), (y2
2 − z2

2 , x2), called double-fold D&I;
• (x1, y

2
1 − z2

1), (y2
2 − z2

2 , x2), called double-fold I&I.

Proof. We follow the same arguments as in Example 2.12 and Theorem 5.5.
We first consider the mono-germ case |S| = 1. If f is a fold (either definite
or indefinite), then

TKef = E3

{(
1
0

)
,

(
0
2y

)
,

(
0
±2z

)}
+ 〈x, y2 ± z2〉E 2

3

= E3

{(
1
0

)
,

(
0
x

)
,

(
0
y

)
,

(
0
z

)}
.

Thus θ(f)/TKef is generated over R by the class of (0, 1) and the map ωf
is obviously surjective, so f is stable (see Lemma 2.9). In the case of the
cusp, we have:

TKef = E3

{(
1
y

)
,

(
0

3y2 + x

)
,

(
0
±2z

)}
+ 〈x, y3 + xy + z2〉E 2

3

= E3

{(
1
y

)
,

(
0
x

)
,

(
0
y2

)
,

(
0
z

)}
.

Now, θ(f)/TKef is generated over R by the classes of {(1, 0), (0, 1)}. Again
ωf is surjective and hence, f is stable.

Assume now that f ∈ E (3, 2) is stable. If f has rank 0, then TKef ⊂
m3θ(f). Since θ(f)/m2θ(f) has dimension 2, we must have necessarily that
TKef = m2θ(f). Moreover, (f∗m2) ⊂ m2

3θ(f), hence the classes of ∂f/∂x,
∂f/∂y and ∂f/∂z should generate m3θ(f)/m2

3θ(f) over R. But this is not
possible, since this space has dimension 6.

Thus, if f is stable, it must have rank 1 and after a coordinate change in
the source, we can assume that f(x, y, z) = (x, g(x, y, z)), for some function
g ∈ m2

3. In other words, we see f as an unfolding of g0(y, z) = g(0, y, z). In
particular, we have:

θ(f)

TKe(f)
∼=

θ(g0)

TKe(g0)
∼=

E2〈
∂g0

∂y ,
∂g0

∂z , g0

〉 .
Let I =

〈
∂g0

∂y ,
∂g0

∂z , g0

〉
. If g0 ∈ m3

2, then I ⊂ m2
2 and thus dimR(E2/I) ≥ 3,

which is not possible by the surjectivity of ωf . Hence, the Hessian matrix
of g0 at the origin must have rank ≥ 1. By the splitting lemma, g0 is A -
equivalent to yk+1±z2, for some k ≥ 1. This implies dimR(E2/I) = k, hence
we must have necessarily k ≤ 2. If k = 1, then f is a fold (either definite or
indefinite) and if k = 2, then f is a cusp, by Theorem 2.11.
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We consider now multi-germs f : (R3, S)→ (R2, y), with S ⊂ R3 a finite
set. If one of the points xi ∈ S is a cusp, then the analytic stratum is
only the point {xi}. Thus, the regular intersection condition of Theorem
2.15 implies that S = {xi}. Otherwise, if all the points of S are folds, the
analytic stratum at each point is a line. The regular intersection condition
now implies that |S| ≤ 2 and that the two lines are transverse in the plane
in the case |S| = 2. This implies that f is a double-fold. �

Note that the 0-stable types are the cusps and the double-folds. Hence if
f ∈ E (3, 2) is FD, then there exists a good representative f : U → V such
that

(1) S(f) ∩ f−1(0) = {0},
(2) the restriction f : U \ f−1(0)→ V \ {0} has only definite and indef-

inite simple fold singularities.

We have that S(f) and the discriminant ∆(f) = f(S(f)) are curves which
are regular outside the origin. After shrinking U, V if necessary, we can
assume that S(f),∆(f) are made of a finite number of arcs joining the origin
with the boundary of U, V , called half-branches. Moreover, the restriction
f : S(f) \ {0} → ∆(f) \ {0} is a diffeomorphism. Each half-branch of ∆(f)
corresponds to a critical value of the link of f , which is of type max/min if
we are in a half-branch of type definite fold and of type saddle if we are in
a half-branch of type indefinite fold. Another important set is

X(f) = f−1(∆(f)) \ S(f).

The set X(f) is a regular surface outside the origin and will also assume that
the connected components of X(f) \ {0} are cylinders going from the origin
to the boundary of U . Each half-branch of S(f) corresponds to a vertex of
the Reeb graph of type max/min if we are in a half-branch of type definite
fold and of type saddle if we are in a half-branch of type indefinite fold.
Each connected component of X(f) \ {0} corresponds to a regular vertex of
the Reeb graph.

Theorem 6.14. Let f, g ∈ E (3, 2) be FD germs such that f−1(0) = {0} =
g−1(0). If f and g are C0-A -equivalent then their Reeb graphs are equiva-
lent.

Proof. By hypothesis, there exist two homeomorphisms germs h, k such that
the following diagram commutes:

(1)

(R3, 0)
f−−−−→ (R2, 0)

h

y yk
(R3, 0)

g−−−−→ (R2, 0)

We take representatives of f , g, h and k and for any small enough ε > 0,
the next diagram is also commutative:

(2)

S̃2
ε

γf−−−−→ S1
ε

h

y yk
Mε

g|Mε−−−−→ Pε
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where Mε = h(S̃2
ε ) and Pε = k(S1

ε ).
From the commutativity of diagram (2) follows that g|Mε is C0-stable.

Choose ε0, ε1 > 0 such that γf : S̃2
ε0 → S1

ε0 and γg : S̃2
ε1 → S1

ε1 are the links

of f and g, respectively, and S1
ε1 ⊂ k(D2

ε0). By Definition 6.9, let Γg|Mε0
be

the Reeb graph associated to g|Mε0 . Then, we can conclude that Γg|Mε0
is

equivalent to Γγf , where Γγf is the Reeb graph of γf .
Consider A1, . . . , An the half branches of the discriminant ∆(g) ordered in

the anti-clockwise orientation. By the cone structure of f (see Theorem 4.1),
each half branch Ai intersects Pε0 in a unique point vi so that v1, . . . , vn are
the critical points of g|Mε0 . Analogously, each Ai intersects S1

ε1 in a unique
point wi, where now w1, . . . , wn are the critical points of γg. We have a
graph isomorphism l : Pε0 → S1

ε1 given by l(vi) = wi, ∀i = 1, . . . , n.
Let C1, . . . , Cr be the connected components of

g−1(∆(g)) \ {0} = ∪ni=1g
−1(Ai).

Again by the cone structure of f , each connected component Cj intersects
Mε0 in a unique connected component Vj of some g−1(vi), so that V1, . . . , Vr
are the vertices of Γg|Mε0

. Finally, each Cj intersects S̃2
ε1 in a unique con-

nected component Wj of g−1(wi), in such a way that W1, . . . ,Wr are now the
vertices of Γγg . We have a bijection ϕ defined by ϕ(Vj) = Wj , ∀j = 1, . . . , r.
In order to have a graph isomorphism between Γg|Mε0

and Γγg we need to
show that ϕ is edge preserving.

Consider U = k(D2
ε0) \ (∆(g) ∪ B2

ε1), and let Yi be one of its connected
components limited by two consecutive half branches Ai and Ai+1. We
denote by αi and βi the arcs of S1

ε1 and Pε0 respectively, which bound Yi,

∀i = 1, . . . , n (see fig. 18). The connected components of g−1(αi) and
g−1(βi) give all the edges of the graphs Γγg and Γg|Mε0

, respectively.

S

P
1

α

βi

i
iY

A
Ai

i+1

ε1

ε0

wi

vi

Figure 18

Take X any connected component of f−1(Yi), for some 1 ≤ i ≤ n. Since
g|X : X → Yi is regular, the induced map g̃ : X/ ∼ → Yi is a local homeo-
morphism and hence, a covering space. But Yi is simply connected, so g̃ is
in fact a homeomorphism. We deduce that the boundary of X/ ∼ has two
components: one is an edge of Γγg given by the quotient of X ∩ g−1(αi) and

the other is an edge of Γg|Mε0
given by the quotient of X ∩ g−1(βi).

Notice that all the edges of Γγg and Γg|Mε0
can be obtained in this way,

hence we have a bijection between the edges of Γγg and Γg|Mε0
which is

compatible with the above bijection ϕ defined between the vertices. �
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Again, Theorem 6.14 together with Corollary 4.6 and Theorem 6.10 show
that the Reeb graph is a complete topological invariant for map germs from
with isolated zeros.

Corollary 6.15. Let f, g ∈ E (3, 2) be FD germs such that f−1(0) = {0} =
g−1(0). Then the following statements are equivalent:

(1) f, g are C0-A -equivalent,
(2) the Reeb graphs of f, g are equivalent,
(3) the links of f, g are C0-A -equivalent.

As we did in Section 5, in the last part of this section, we will describe the
topology of FD germs f ∈ E (3, 2) with Boardman type Σ2,1. These germs
constitute the simplest non trivial class of singular germs. The Boardman
type Σ2 means that f has corank 1 and the next result gives a restriction
on the link for this class of germs.

Lemma 6.16. Let f ∈ E (3, 2) be a corank 1 FD germ given by f(x, y, z) =
(x, hx(y, z)). Then h0 : (R2, 0)→ (R, 0) is FD.

Proof. Since f is FD, we can assume it is polynomial. Then its complexifica-
tion fC is also FD and by the Mather-Gaffney criterion S(fC)∩f−1

C (0) = {0}
(see 3.4). This implies that S((h0)C) ∩ (h0)−1

C (0) = {0} and hence h0 is FD
for the contact group K . But for function germs, it is well-known that the
FD with respect the contact group K is equivalent to the FD with respect
to the group A (see again [42, Proposition 2.3]). �

Theorem 6.17. Let f ∈ E (3, 2) be a corank 1 FD germ with f−1(0) = {0}.
Then the link of f is not surjective.

Proof. Consider f written by f(x, y, z) = (x, hx(y, z)), where h0 is also FD
and h−1

0 (0) = {0}. By Theorem 4.1, h−1
0 (S0

ε ) is diffeomorphic to S1, for
small enough ε > 0.

Suppose that associated link of f is surjective. Then (0, ε) and (0,−ε)
belong to image of the map γf : f−1(S1

ε )→ S1
ε . But

γ−1
f ({(0, ε), (0,−ε)}) = f−1({(0, ε), (0,−ε)}) ' h−1

0 ({ε,−ε}) ' S1,

where ' indicates homeomorphism of sets. This gives a contradiction be-
cause S1 is connected, {(0, ε), (0,−ε)} is not connected and γf is a continuous
map. �

Remark 6.18. (1) It follows from Theorem 6.17 that the stable map
γ : S2 → S1 presented in the right hand side of fig. 17 cannot be
realized as the link of a corank 1 FD map germ f ∈ E (3, 2). Up
to this moment, we do not know if in fact, this stable map can be
realized or not as the link of a corank 2 map germ.

(2) Another consequence of Theorem 6.17 is that if f has corank 1 and
f−1(0) = {0}, then the generalized Reeb graph can obtained from
the classical one, since the link is not surjective (see Remark 6.6).
From now on in this section, the Reeb graph will be referred to the
classical version, unless otherwise specified.
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Any corank 1 germ f ∈ E (3, 2) may have Boardman type Σ2,0 or Σ2,1,
Σ2,2. It is easy to see that if f has type Σ2,0, then it is A -equivalent to
the definite or indefinite fold (x, y, z) 7→ (x, y2 ± z2), so we do not need to
consider this case. From now on, we restrict ourselves to germs of type Σ2,1.

Lemma 6.19. Any FD germ f ∈ E (3, 2) of Boardman type Σ2,1 with
f−1(0) = {0} can be written, up to A -equivalence, as

(3) f(x, y, z) = (x, yk + ak−2(x)yk−2 + · · ·+ a1(x)y + z2),

for some k ≥ 4 even and functions a1, . . . , ak−2 ∈ E1.

Proof. Consider f written by f(x, y, z) = (x, hx(y, z)), where h0 is also FD
and h−1

0 (0) = {0}. The fact f has type Σ2,1 implies that the Hessian of h0

has rank 1, hence up to A -equivalence, h0 is given by h0(y, z) = yk + z2, for
some k ≥ 4 even. The mini-versal deformation of h0 is

H(a1, . . . , ak−2, y, z) = yk + ak−2y
k−2 + · · ·+ a1y + z2.

Then, there exist functions a1, . . . , ak−2 ∈ E1 such that

f(x, y, z) = (x,H(a1(x), . . . , ak−2(x), y, z)).

�

Definition 6.20. We say that a FD germ f ∈ E (3, 2) of Boardman type
Σ2,1 with f−1(0) = {0} has multiplicity k, if it can be written, up to A -
equivalence as in (3).

Let f ∈ E (3, 2) be FD germ of Boardman type Σ2,1 with f−1(0) = {0}
and multiplicity k given as in (3). We write, for simplicity,

hx(y) = yk + ak−2(x)yk−2 + · · ·+ a1(x)y.

We fix a good representative f : U → V and take ε > 0 such that (−ε, ε)×
(−ε, ε)× (−ε, ε) ⊂ U . The singular points of f are points (x, y, 0) such that
h′x(y) = 0. The fact that f has fold type outside the origin implies if x 6= 0,
then h′′x(y) 6= 0 at the singular points. Moreover, f has a definite fold if
h′′x(y) > 0 and an indefinite fold if h′′x(y) < 0. Moreover, all the critical
values of have to be distinct.

We deduce that x with 0 < |x| < ε, the function hx : (−ε, ε) → R is a
Morse with distinct critical values. In particular, all the functions hx with
0 < x < ε are A -equivalent and all the functions hx with −ε < x < 0 are
also A -equivalent. In both we have a Morsification of xk and the relative
position of the critical values in both functions determine the Reeb graph
of f .

Since k is even, hx will have an odd number of critical points y1, . . . , yr
with r ≤ k − 1. The points y1, y3, . . . , yr are the local minima and the
points y2, y4, . . . , yr−1 are the local maxima of hx. If the critical values are
v1 < · · · < vr, then can associate with hx a permutation σ ∈ Σr such that
hx(yi) = vσ(i). We denote by σ+, σ− the two permutations of hx for x > 0

and x < 0 respectively. Then, the pair (σ+, σ−) determines the Reeb graph
of f .
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Exemple 6.21. Let f ∈ E (3, 2) be FD germ of Boardman type Σ2,1 with
f−1(0) = {0} and multiplicity 4. After change of coordinates in the source
and target, we can assume f is given by

f(x, y, z) = (x, y4 + a(x)y2 + b(x)y + z2).

Notice that the bifurcation set B of the versal unfolding of h0 in this case
is given in the (a, b)-plane by by b(−4a3 − 27b2) = 0 (see fig. 19), which
permits us to choose appropriate functions a(x) and b(x) such that we can
obtain all types of possible configurations.

1

3

2

1

2

3

σ = (1, 3, 2)

σ = (2, 3, 1)

1

σ = (1)

1

σ = (1)

Figure 19. Morsifications of y4

Then, there are three possibilities for the Reeb graph of the link of f ,
according to the number of saddles:

• 0 saddle, in this case (σ+, σ−) = ((1), (1)), then f is topologically
equivalent to (x, y4 + x2y + z2) (see fig. 20);

• 1 saddle, this corresponds to (σ+, σ−) = ((1), (1, 3, 2)), then f is
topologically equivalent to (x, y4 + xy2 + 3x5y + z2) (see fig. 21);

• 2 saddles, this happens if (σ+, σ−) = ((1, 3, 2), (1, 3, 2)) and f is
topologically equivalent to (x, y4 − x2y2 + x5y + z2). (see fig. 22).

We remark that the configuration ((1, 3, 2), (2, 3, 1)) is topologically equiv-
alent to ((1, 3, 2), (2, 3, 1)) since the corresponding Reeb graphs are equiva-
lent.
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Figure 20. Reeb graph with no saddles
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Figure 21. Reeb graph with one saddle
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Figure 22. Reeb graph with two saddles

7. The cone structure theorem for map germs with non
isolated zeros

The case of a FD germ f ∈ E (n, p) with f−1(0) 6= {0} is much more com-
plicated than the case with f−1(0) = {0}. Fukuda gave in [9] an analogous
theorem to Theorem 4.1, which in our notation can be stated as follows(see
[9, Theorem 1’]).

Theorem 7.1. Let f : U → V a good representative of a polynomial map
germ f : (Rn, 0)→ (Rp, 0) with II, DST and such that f−1(0) 6= {0}. Then,
there exist ε0 > 0 and a strictly increasing smooth function δ : [0, ε0] →
[0,+∞) with δ(0) = 0 such that for any ε, δ with 0 < ε ≤ ε0 and 0 < δ ≤ δ(ε),
the following properties hold:

(1) f−1(0)∩Sn−1
ε is a smooth submanifold of dimension n−p−1, whose

diffeomorphic type is independent of ε.
(2) Nε,δ := Dn

ε ∩ f−1(Sp−1
δ ) is a smooth submanifold with boundary of

dimension n− 1, whose diffeomorphic type is independent of ε, δ.
(3) The restriction f |Nε,δ : Nε,δ → Sp−1

δ is a stable mapping, whose
A -class is independent of ε, δ.

The proof of this theorem can be done by using similar arguments to those
of the proof of Theorem 4.1 for the case f−1(0) = {0}. Of course, we can

define the link of f as being the stable mapping f |Nε,δ : Nε,δ → Sp−1
δ . The

main problem now is that f is not C0-A -equivalent to the cone of f |Nε,δ in
the usual sense. In fact, since Nε,δ is not a sphere, its cone is not a disk.
So, we need to introduce a generalized version of the cone in order to solve
this. The following construction is given in [5]. We recall that if X,Y are
topological spaces and f : A→ Y is a continuous map on A ⊂ X, then the
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Figure 23. The map f |Nε,δ.

attachment is defined as

X ∪f Y =
X t Y

x ∼ f(x) : ∀x ∈ A
,

where t means disjoint union and ∼ indicates that all points of A are iden-
tified with its images.

Definition 7.2. A link diagram is a diagram of the form

V
r←−−−− N

γ−−−−→ Sp−1,

where N is a manifold with boundary, γ is a continuous map, V is a con-
tractible space and r is a continuous surjective map such that the attach-
ment (N × I)∪r V is homeomorphic to the closed disk Dn (here we identify
N ≡ N × {0} ⊂ N × I).

Definition 7.3. Given a link diagram V
r←−−−− N

γ−−−−→ Sp−1, the gen-
eralized cone of a link diagram is the induced map

C(γ, r) : (N × I) ∪r V → c(Sp−1),

defined in the obvious way (that is, [x, t] 7→ [γ(x), t] if (x, t) ∈ N × I and
[y] 7→ [0] if y ∈ V ).

Notice that here we are using the small letter c to the usual notion of
cone and the capital letter C to indicate the generalized cone. Also note
that in applying the notion of generalized cone of a link diagram for the case
V = {0}, we obtain essentially the usual notion of the cone.

Definition 7.4. We say that two link diagrams

V0
r0←−−−− N0

γ0−−−−→ Sp−1, V1
r1←−−−− N1

γ1−−−−→ Sp−1

are A -equivalent (resp. C0-A -equivalent) if there are diffeomorphisms
(resp. homeomorphisms) α : V0 → V1, φ : N0 → N1 and ψ : Sp−1 → Sp−1

such that r1 = α ◦ r0 ◦ φ−1 and γ1 = ψ ◦ γ0 ◦ φ−1.

The following lemma follows easily from the definitions.

Lemma 7.5. If two link diagrams are C0-A -equivalent, then their general-
ized cones are C0-A -equivalent.
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We present now the structure cone theorem for map germs with non
isolated zeros. Let f ∈ E (n, p), in order to simplify the notation, we put

fε,δ := f |Nε,δ : Nε,δ → Sp−1
δ and Vε = f−1(0) ∩Dn

ε .

Theorem 7.6. [4] Let f : U → V a good representative of a polynomial
map germ f ∈ E (n, p) with II, DST and such that f−1(0) 6= {0}. For each
ε, δ with 0 < δ � ε � 1, there exists a continuous and surjective mapping
rε,δ : Nε,δ → Vε, such that:

(1) The link diagram

Vε
rε,δ←−−−− Nε,δ

fε,δ−−−−→ Sp−1
δ

is independent of ε, δ up to C0-A -equivalence.

(2) The restriction f |Dnε ∩f−1(Dpδ ) : Dn
ε ∩f−1(Dp

δ )→ Dp
δ is C0-A -equivalent

to the generalized cone:

C(fε,δ, rε,δ) : (Nε,δ × I) ∪rε,δ Vε → c(Sp−1
δ ),

where I = [0, δ].

Here we give a sketch of the proof of Theorem 7.6, full details of the
proof can be found in [4, Theorem 4.4]. Let (A,B) be the stratification by
stable types of f , which is a Thom stratification of f . We choose ε0 > 0
and 0 < δ0 � ε0 � 1 small enough and denote by Bn

ε0 , B
p
δ0

the interiors of

Dn
ε0 , D

p
δ0

respectively. Then Dn
ε0 ∩ f

−1(Bp
δ0

) is a manifold with boundary.
We consider the mappings

Dn
ε0 ∩ f

−1(Bp
δ0

)
f−−−−→ Bp

δ0

ρ−−−−→ [0, δ0),

where ρ(y) = ‖y‖2. Both are proper and we have that the restriction of
(A,B) is a Thom stratification of f and (B, C) is a Thom stratification
of ρ, where C = {(0, δ0), {0}}. We take stratified vector fields X,Y, T on
Dn
ε0 ∩ f

−1(Bp
δ0

), Bp
δ0

and [0, δ0) respectively, as follows: T = d
dt in (0, δ0)

and T0 = 0; Y is a lifting of T through ρ and X is a lifting of Y through
f . The existence of X,Y is given by [11, Theorem 3.2]. Moreover, since T
is globally integrable, then Y,X are also globally integrable, by [11, Lemma
4.8].

Let 0 < δ1 < δ0. We define the mapping

r : Dn
ε0 ∩ f

−1(Dp
δ1

)→ Vε0 ,

such that r(x) is the point of Vε0 where the integral curve of X passing
through x meets Vε0 . We consider the link diagram:

Vε0
r←−−−− Nε0,δ1

f−−−−→ Sp−1
δ1

We define

Φ : Dn
ε0 ∩ f

−1(Dp
δ1

)→ (Nε0,δ1 × [0, δ1]) ∪r Vε0 ,

as follows:

Φ(x) =

{
[φ(x), ‖f(x)‖2], if x /∈ Vε0 ,

[r(x), 0], if x ∈ Vε0 ,
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being φ(x) the point of Nε0,δ1 where the integral curve of X passing through

x meets Nε0,δ1 . Analogously, we also define Ψ : Dp
δ1
→ c(Sp−1

δ1
), as

Ψ(y) =

{
[ψ(y), ‖y‖2], if y 6= 0,

[y0, 0], if y = 0,

being ψ(y) the point of Sp−1
δ1

where the integral curve of Y passing through

y meets Sp−1
δ1

and y0 ∈ Sp−1
δ1

. It is not difficult to see that Φ,Ψ are homeo-
morphisms which make commutative the following diagram

Dn
ε0 ∩ f

−1(Dp
δ1

)
f−−−−→ Dp

δ1

Φ

y Ψ

y
(Nε0,δ1 × [0, δ1]) ∪r Vε0

C(f,r)−−−−→ c(Sp−1
δ1

).

This proves that f is C0-A -equivalent to the generalized cone of the link
diagram. The construction for other values of ε, δ can be done by using
Theorem 7.1.

In the case that f has no DST, then the theorem is still valid, but we use
the canonical Thom stratification of f instead of the stratification by stable
types (see [11, page 32]).

Definition 7.7. Let f : U → V a good representative of a polynomial map
germ f ∈ E (n, p) with II and f−1(0) 6= {0}. The link diagram of f is the
link diagram

Vε
rε,δ←−−−− Nε,δ

fε,δ−−−−→ Sp−1
δ

given in Theorem 7.6 for 0 < δ � ε � 1. Then, f is C0-A -equivalent to
the generalized cone of its link diagram.

Corollary 7.8. Let f, g ∈ E (n, p) be two FD germs with non isolated zeros.
If their link diagrams are C0-A -equivalent, then f, g are C0-A -equivalent.

Exemple 7.9. Consider a FD function germ f ∈ E (2, 1) with f−1(0) 6= {0}.
The FD condition implies that f has isolated critical point in the origin.
We fix 0 < δ � ε � 1 as in Theorems 7.1 and 7.6. We can assume f is
polynomial, hence f−1(0) is the algebraic curve given by f(x, y) = 0. Then,
Vε = f−1(0) ∩ D2

ε is made of a finite an even number 2r of half-branches
which intersect transversally the boundary S1

ε and separate the disk D2
ε into

2r sectors, so that the sign of f alternates on consecutive sectors.
The manifoldNε,δ is given by the level curves f(x, y) = ±δ inD2

ε . It has 2r
connected components, one in each sector of D2

ε \ f−1(0) and diffeomorphic
to a closed interval. Moreover, he retraction map r : Nε,δ → Vε, when
restricted to each connected component, is a diffeomorphism onto the two
half-branches which bound the sector containing the connected component.

Thus, the C0-A -class only depends on the number of half-branches 2r.
We deduce that two functions f, g are C0-A -equivalent if and only if the
curves f−1(0) and g−1(0) have the same number of half-branches.
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Figure 24. The link of a FD function f ∈ E (2, 1)
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